BGW-Day Report: HPC-Colony’s Resource
Management Techniques for Large Systems

Laxmikant V. Kalé

(kale@cs.uiuc.edu)

October 19, 2006

1 Introduction

As part of the HPC-Colony project sponsored by the Department of Energy’s FastOS program
(http://www.hpc-colony.org), we are conducting research on resource management techniques for
systems with very large numbers of processors. In particular, our group at the Parallel Program-
ming Laboratory at the University of Illinois (http://charm.cs.uiuc.edu) is studying load balancing
and fault tolerance techniques for that class of systems. During the recent BGW-Day, we had a
chance to test the scalability of some of our approaches in those areas. This document describes
the tests we conducted, the results we obtained, and the conclusions that we could draw from such
experiments.

The remainder of this report is organized as follows. In Section 2 we briefly describe our
advanced load balancing schemes and the experiments that we conducted to test them. Section 3
presents our fault tolerance approaches and their observed performance on BGW. Section 4 shows
scalability results for a real scientific application that is based on those techniques, running on
large BGW configurations. Finally, Section 5 contains our conclusions and a summary of our
achievements during BGW-Day.

2 Load Balancing Techniques

Load balancing on peta-scale machines is a highly challenging problem, due to the large scale of
the parallel system and the complexity in applications. In the context of Charm++, in order to
exploit such peta-scale machines and take advantage of the load balancing capability of Charm++,
applications typically involve a number of migratable objects that is by far larger than the physical
system size. The complexity of load balancing algorithms thus leads to significant overhead from
load balancing both in terms of CPU time and of memory requirements.

2.1 Load Balancing Scheme

We have developed a new hybrid load balancing algorithm (HybridLB) that is designed for scien-
tific applications with persistent computation and communication patterns. We use the automatic
run-time instrumentation in Charm++ for collecting load data. HybridLB utilizes a load balanc-
ing hierarchical tree to distribute tasks across processors. This new algorithm takes advantage of
Charm++’s processor virtualization idea for applications with fine-grained parallelism, and it takes
communication into account for achieving satisfactory load balancing decisions. More details
about this algorithm can be found at [4].

2.2 Load Balancing Experimental Results

One of the most important goals of the HybridLB is to reduce the usage of the memory taken by
the load balancing algorithms, including the memory space for the load database. For centralized
load balancing schemes where a global load database is constructed on a particular processor, the
load database can easily exceed the memory capacity of a node of BG/L.

We evaluated our new HybridLLB with the Lb_test program on BGW. The test program creates
a large number of objects having size 512KBytes. These objects communicate in a 2D-mesh
virtual topology similar to a 2D stencil computation. The hierarchical tree used by HybridLB is
built as following: every 1024 processors form a load balancing domain at level 1, and 8 such
domains in an 8K-processor simulation form the level-2 load balancing domain; meanwhile, in
a 16K-processor simulation case, there are 16 such level-2 domains. We used greedy-based load
balancing algorithms (GreedyLB) at level 1 and used a refinement-based load balancing algorithm
at level 2.

We ran this test program and measured the memory usage by the HybridLLB load balancer. The
results are shown in Table 1.

nPEs | 4096 8192 16384
Mem | 6.8MB | 22.57MB | 22.63MB

Table 1: Memory Usage of the HybridLLB

For comparison, we ran the same test with our centralized load balancing strategy. Indeed, the
centralized scheme ran out of memory when constructing the global load database.
We also measured the time spent in load balancing. Table 2 shows these results.

nPEs | 8192 | 16384
Time | 14.70s | 23.16s

Table 2: Load balancing time of the HybridLLB

We found that the load balancing process itself is not as efficient as we expected. We captured
performance traces on BGW and dumped performance logs for post-mortem analysis. Through this

2

analysis, conducted with Projections (our performance analysis tool), we found that the multicast
— sending 1024 messages down a hierarchical tree — is responsible for most of the overhead.

3 Fault Tolerance

Traditionally, checkpointing and restart has been one of the most widely used techniques for fault
tolerance in large parallel applications. By periodically saving application status to permanent
storage, the execution can be restarted from the last checkpoint if system faults occur. This scheme
is available for Charm++ and AMPI applications [5]. However, in large applications, the costs
involved in saving checkpoints to disk may be too high. We have implemented two other schemes
for fault tolerance in parallel applications, based on diskless checkpointing and message-logging.
We tested both schemes on BGW, and report the observed results in the next subsections.

3.1 In-Memory Checkpointing

Our in-memory checkpoint scheme [5, 6] adopted the idea of diskless checkpointing, which check-
points data in memory. It uses a coordinated checkpoint strategy. In order to handle one fault at a
time — a common case scenario, each checkpoint of an object needs be stored in the memory of
two different processors. This double-checkpointing ensures the availability of one checkpoint in
case the other is lost. Since accessing memory is much faster than accessing disk, the potentially
low checkpoint overhead and faster restart allows us to achieve better performance than tradi-
tional disk-based checkpoint schemes. Sending checkpoint data to the memory of other processors
takes advantage of the high speed interconnect, resulting in much lower overhead compared with
disk-based checkpointing. With the distributed nature of the checkpoint protocol, our checkpoint
approach scales well when the number of processors increases.

3.1.1 In-Memory Checkpointing Results

We used a 7-point stencil with 3-D domain decomposition, written in MPI, to test the performance
of the in-memory checkpoint scheme. For a particular number of processors, we varied the amount
of data per processor. We took multiple checkpoints for every run and report the average time for
a checkpoint. Table 3 shows the average time for a checkpoint for varying amounts of data per
processor on 8192 and 20480 BGW processors.

3.2 Message Logging

We bring together the ideas of sender-based pessimistic message logging and object-based virtu-
alization to develop a fault tolerance protocol that provides fast recovery from faults [1]. Object-
based virtualization [3] encourages the user to view his computation as a large number of interact-
ing objects. These objects are also referred to as virtual processors. Virtual processors can interact
only by sending messages to each other. The user decomposes his computation into virtual pro-
cessors without caring about the number of physical processors present. The runtime system is

Number of Processors | Data per Processor (kB) | Checkpoint Time(s)
8192 80 .1613006
8192 300 .1626386
8192 1200 .1801744
8192 5000 2370764
8192 20000 4174428
20480 80 3777704
20480 20000 .6924555

Table 3: Time taken for in-memory checkpoints with different amounts of data per BGW processor

responsible for mapping the virtual processors to physical processors. Messages between different
objects are delivered by the runtime system without the user being aware of the objects’ physical
location.

We developed a sender-based pessimistic message logging protocol that works along with
object-based virtualization. In sender-side message logging, the messages sent to the receiver and
the sequence in which they are processed by the receiver are stored on the senders. This reduces the
overhead of pessimistic message logging and also removes the need for an idealized stable storage.
We treat the virtual processors, and not the physical processors, as the communicating entities that
send and receive messages. Since an object’s state is modified only by the messages it receives, we
can apply the PWD assumption to virtual processors instead of physical processors. After a crash,
if a virtual processor re-executes messages in the same sequence as before, it can recover its exact
pre-crash state. Therefore, we run the sender-based message logging protocol with the objects as
participating entities instead of physical processors.

Virtualization affords us a number of potential benefits with respect to our message logging
protocol. It is the primary idea behind faster restarts since it allows us to spread the work of the
restarting processor among other processors. The facility of runtime load balancing can be utilized
to restore any load imbalances produced by spreading the work of a processor among other proces-
sors. Virtualization also makes applications more latency-tolerant by overlapping communication
of one object with the computation of another. This helps us hide the increased latency caused by
the sender-side message logging protocol.

Although combining virtualization with message logging provides a number of advantages, it
requires significant extensions to a basic sender-side message logging protocol. These extensions
are primarily required for the case where a virtual processor sends a message to another one on
the same physical processor (say processor A). We record some data about such a message in the
memory of another physical processor (say B) that we refer to as the buddy of processor A. If A
crashes, the data is fetched from its buddy B so that the virtual processors on A can reprocess the
same messages in the same sequence as before the crash. In fact, a processor’s buddy should be
chosen such that the chances of both nodes failing at the same time are as low as possible.

We implement this message logging protocol in the Charm++/AMPI runtime system. Since
AMPI is an implementation of MPI on top of Charm++, it lets traditional MPI codes to take
advantage of our message logging protocol without being modified.

3.2.1 Message-Logging Experimental Results

4896 processors 1 YF/processor ——
4896 processors 2 VP/processor ——
8192 processors 1VF/processor —#%—

28k processors 1VP/processor —5—

Iteration Tine (s}

8,61

8,881 L
8,881 a.e1 a.1

Granularity (s}

Figure 1: Iteration time of 7-point stencil on BGW for different levels of granularity

To study the performance of our message logging protocol on different numbers of processors,
we used a 7-point stencil with 3-D domain decomposition written in MPI. The stencil program
was written so that in every iteration each MPI thread (virtual processor) exchanges messages with
its neighbors and then performs computations for a fixed amount of time. The amount of time a
virtual processor computes in each iteration is called its granularity. Because our message-logging
protocol creates additional messages between processors, it is important to ensure that these extra
messages do not become a bottleneck in the execution, even in the case of a fault-free scenario.
To verify that, we conducted executions of the 7-point stencil using our message logging protocol,
and obtained the data presented in Figure 1. Those plots show the average iteration time for the
7-point stencil application for different values of granularity. We show results on four, eight and
twenty thousand processors, with one processor per BGW node. These plots confirm that our
protocol scales to a large number of processors for applications with large granularity. When the
granularity is smaller, there is a significant performance penalty on larger numbers of processors.

4 Scientific Applications

Many of the enhancements that we are adding to the Charm++ infrastructure are directly available
to the various scientific applications based on Charm++. One of these applications is a cosmolog-
ical simulator, developed in collaboration with the University of Washington (Prof. Thom Quinn),
under funding from an NSF grant (NSF-ITR-0205611). This new simulator, named ChaNGa
(Charm++ N-body Gravity), had been previously scaled on up to one thousand processors. During
BGW-Day, we were able to run the code using the entire machine (twenty thousand nodes). These
executions achieved very good performance, as we describe in this section.

4.1 Cosmology Code

ChaNGa [2] is a new N-body cosmological simulator that can be used to study the formation of
galaxies and planets. The code utilizes the Barnes-Hut tree topology to compute gravitational
forces. We leverage the object-based virtualization inherent in the Charm++ runtime system to
obtain automatic overlapping of communication and computation time, as well as to perform au-
tomatic runtime measurement-based load balancing. ChaNGa advances the state-of-the-art in N-
Body simulations by allowing the programmer to achieve higher levels of resource utilization with
moderate programming effort. In addition, as confirmed by our experimental results, the use of
Charm++ has enabled ChaNGa to efficiently scale on large machine configurations.

4.2 Cosmological Simulation Results

We executed ChaNGa on BGW configurations of various sizes. In all of our tests, we used BGW
in “Co-Processor” mode, so that each processor could utilize the maximum amount of memory
and of network bandwidth available in a node. Initially, we used a cosmological dataset containing
50 million particles. Figure 2 shows the code performance for the gravity calculation phase in one
iteration of the execution. The code scales well on up to two thousand processors, but there are no
gains beyond that point. The reason for this is that with more than two thousand processors, there
is no longer a total overlap between computation and communication, and the overhead imposed
by the communication dominates the execution.

In our second set of tests, we used ChaNGa with a much larger dataset, consisting of 700
million particles. The observed performance on BGW is shown on Figure 3. One can see that
there is still gain when twenty thousand processors are used, which is the maximum configuration
where we can use the machine in “Co-Processor’” mode. Thus, we can confidently claim that we
can benefit from using all the available nodes in BGW for this cosmological simulator.

5 Conclusion and Final Comments

Our experimental results on BGW enabled us to verify that our approaches for resource manage-
ment are indeed applicable for large systems such as Blue Gene. In the load balance area, our

500 T T T T T T T

400 50-million particles —+— 4

Iteration Time (s)

200

100

128 256 512 1024 2048 4096 8192
Number of Processors

Figure 2: ChaNGa performance on BGW with 50-million particle dataset

hybrid load balancing scheme achieved much more limited use of memory than traditional cen-
tralized schemes across a significant number of processors, which makes agressive load balancing
optimization possible on machines like BlueGene. The experiments also helped us identify per-
formance bottlenecks of our new load balancing strategy for further improvement in the parallel
efficiency.

Our in-memory checkpointing technique provided a checkpointing overhead that increased
proportionally to the amount of state in each processor. We were able to demonstrate the use
of this protocol in a fault-free scenario on up to twenty thousand BGW nodes. Meanwhile, our
message-logging scheme provided an overhead in execution time that scaled well on large numbers
of processors when the computation granularity was large. When that granularity was small, there
was a significant performance penalty when we scaled the machine size; for applications with this
level of granularity, message logging may not be the best fault tolerance approach.

In addition to our basic resource management tests, we successfully ran a Cosmology code
based on Charm++. These tests utilized effectively all the BGW nodes when the dataset size
was sufficiently large. Such large datasets are typical in production executions of interest to as-
tronomers. Hence, we confirmed that our cosmological simulator running on a machine such as
BGW can be a powerful resource to the Cosmology community.

In general, we were very pleased with the results of the tests conducted on BGW. Some of our

500 T T T T

400 700-million particles —+— 4

300

Iteration Time (s)

200

100

1 1 1 1 1
1024 2048 4096 8192 16384 32768
Number of Processors

Figure 3: ChaNGa performance on BGW with 700-million particle dataset

tests on BGW did not succeed and we had to abort their execution, in order to use the time during
the day for other tests; these errors might have been due to bugs in our code that only manifest in
large machine configurations, and we are studying more carefully those issues. Nevertheless, most
of our tests completed execution in a normal fashion. The results that we obtained validated some
of our approaches, and confirmed that some of the tested techniques may not be applicable for
all applications (such as message logging and small-granularity codes). Overall, the opportunity
to conduct these tests on a large machine such as BGW was a very valuable step in our research.
Furthermore, the simple fact that we obtained performance gains in a real application using the
entire machine gives us even more evidence of the powerful capabilities of Charm++ as a basis for
high performance computing on large systems.

Acknowledgments: We are very grateful to IBM for offering us time on BGW and for giving
us the opportunity to test our codes on the full system. In particular, we thank Fred Mintzer and
his team at IBM for the support provided during BGW-Day.

References

[1] Sayantan Chakravorty and L. V. Kale. A fault tolerant protocol for massively parallel ma-
chines. In FTPDS Workshop for IPDPS 2004. 1IEEE Press, 2004.

[2] Filippo Gioachin, Amit Sharma, Sayantan Chackravorty, Celso Mendes, Laxmikant V. Kale,
and Thomas R. Quinn. Scalable cosmology simulations on parallel machines. In 7th Interna-
tional Meeting on High Performance Computing for Computational Science (VECPAR), July
2006.

[3] Laxmikant V. Kalé. Performance and productivity in parallel programming via processor vir-
tualization. In First Intl. Workshop on Productivity and Performance in High-End Computing
(HPCA 10), Madrid, Spain, February 2004.

[4] Gengbin Zheng. Achieving High Performance on Extremely Large Parallel Machines: Per-
formance Prediction and Load Balancing. PhD thesis, Department of Computer Science,
University of Illinois at Urbana-Champaign, 2005.

[5] Gengbin Zheng, Chao Huang, and Laxmikant V. Kalé. Performance evaluation of automatic
checkpoint-based fault tolerance for ampi and charm++. ACM SIGOPS Operating Systems
Review: Operating and Runtime Systems for High-end Computing Systems, 40(2), April 2006.

[6] Gengbin Zheng, Lixia Shi, and Laxmikant V. Kalé. Ftc-charm++: An in-memory checkpoint-
based fault tolerant runtime for charm++ and mpi. In 2004 IEEE International Conference on
Cluster Computing, pages 93—103, San Dieago, CA, September 2004.

